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Abstract—During the past several years, as one of the most 
successful applications of sparse coding and dictionary learning, 
dictionary based face recognition has received significant 
attention. Although some surveys of sparse coding and dictionary 
learning have been reported, there is no specialized survey 
concerning dictionary learning algorithms for face recognition. 
This paper provides a survey of dictionary learning algorithms for 
face recognition. To provide a comprehensive overview, we not 
only categorize existing dictionary learning algorithms for face 
recognition but also present details of each category. Since the 
number of atoms has an important impact on classification 
performance, we also review the algorithms for selecting the 
number of atoms. Specifically, we select six typical dictionary 
learning algorithms with different numbers of atoms to perform 
experiments on face databases. In summary, this survey provides 
a broad view of dictionary learning algorithms for face 
recognition and advances study in this field. It is very useful for 
readers to understand the profiles of this subject and to grasp the 
theoretical rationales and potentials as well as their applicability 
to different cases of face recognition. 

Index Terms—dictionary learning; sparse coding; face 
recognition 
 

I. INTRODUCTION 
ace recognition is an important research topic in computer 
vision and pattern recognition. With inspiration from the 

sparsity mechanism of the human vision system and the success 
of sparse coding in image processing, the sparse representation 
based classification algorithm has received sufficient attention 
and achieved excellent performance in face recognition [1-2]. 
However, research has demonstrated that learning a desired 
dictionary from training data instead of using off-the-shelf base 

This work was supported in part by Shenzhen Council for Scientific and 
Technological Innovation under Grant JCYJ2015033015522059, Foundation 
for Young Talents in Higher Education of Guangdong, grants No. 
2015KQNCX08 and Open Fund Project of Fujian Provincial Key Laboratory of 
Information Processing and Intelligent Control (Minjiang University) (No. 
MJUKF201720). 

Corresponding author：Y. Xu is with the Bio-Computing Research Center, 
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, 
China (e-mail: laterfall@hitsz.edu.cn). 

   Z. Li is with the Industrial Training Center, Guangdong Polytechnic 
Normal University, Guangzhou 510665, China. He is also with Fujian 
Provincial Key Laboratory of Information Processing and Intelligent Control 
(Minjiang University), Fuzhou 350121, China (e-mail: 
lizhengming2004@126.com). 

J. Yang is with the School of Computer Science, Nanjing University of 
Science and Technology, Nanjing, Jiangsu 210094, China(e-mail: 
csjyang@mail.njust.edu.cn; tangjh1981@acm.org). 

D. Zhang is with the Biometrics Research Centre, Department of 
Computing, Hong Kong Polytechnic University, Kowloon 999077, Hong 
Kong(e-mail: csdzhang@comp.polyu.edu.hk). 

s(e.g., wavelets) could lead to state-of-the-art results in many 
practical applications, such as face recognition [3-4], 
de-noising [5-6], clustering [7-8], image super-resolution [9-10] 
image de-blurring [11-12] and image segmentation [13]. That is, 
the obtained dictionary plays an important role in the success of 
the sparse representation, which allows an input signal to be 
faithfully and discriminatively represented as a sparse linear 
combination of atoms. Therefore, many dictionary learning 
algorithms have been proposed for different applications. The 
characteristics of sparse coding and dictionary learning 
algorithms have been presented in the past years. Elad [14] 
offered a brief presentation of sparse and redundant 
representation modelling and outlined ten key future research 
directions for sparse coding. Rubinstein et al. [15] described the 
evolution process of how to obtain a dictionary by using 
mathematical and learned models. Tosic et al. [16] presented a 
broad overview of dictionary learning algorithms and showed 
their usage in various applications, such as audio-visual coding 
and stereo image approximation. Specifically, they discussed 
the discriminative power of sparse representations and outlined 
the benefits of dictionary learning in classification and face 
recognition applications. Cheng et al. [17] presented a survey of 
algorithms on sparse representation, learning and modelling 
with an emphasis on visual recognition, which addressed both 
theory and application aspects. Gangeha et al. [18] provided a 
review of supervised dictionary learning and sparse 
representation and divided the dictionaries into six categories 
based on the approach of using label information in learning the 
dictionary and/or sparse representation. Zhang et al. [19] 
presented a comprehensive overview of sparse representation, 
summarized various available sparse representation methods 
and discussed their motivations, mathematical representations 
and applications.  

Although the above surveys provide a broad review of sparse 
coding and dictionary learning, there is no survey of dictionary 
learning algorithms for face recognition. For face recognition, 
because of varying poses, illuminations and facial expressions, 
a test sample usually cannot be well represented by original 
training samples. However, a dictionary is able to effectively 
model the pose, illumination and facial expression information 
including the corresponding variations, so a test sample can be 
better represented by atoms of the dictionary. There are a 
number of works concerning dictionary learning based face 
recognition over the past decade. Therefore, it is necessary to 
review the ideas, technical potential and performance of 
dictionary learning algorithms for face recognition. Moreover, 
this survey offers some in-depth insights into the studies of face 
recognition based on dictionary learning, including key points 
and some important details. In terms of the objectives of 
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dictionary learning algorithms for face recognition, we can 
divide them into five categories, i.e., shared dictionary learning 
algorithms, class-specific dictionary learning algorithms, 
commonality and particularity dictionary learning algorithms, 
auxiliary dictionary learning algorithms and domain adaptive 
dictionary learning algorithms. A shared dictionary learning 
algorithm can capture the common characteristics of face 
images, and it usually cannot adequately preserve specific 
characteristics of face images of each class. A class-specific 
dictionary learning algorithm can capture the main 
characteristics of face images of each class, whereas it usually 
contains considerable redundant information. A commonality 
and particularity dictionary learning algorithm can not only 
preserve common characteristics of the face images but can 
also preserve specific characteristics of the face images of each 
class. An auxiliary dictionary learning algorithm uses images of 
external faces, i.e., outsiders, to represent possible variations of 
the face images. A domain adaptive dictionary learning 
algorithm applies domain adaption to face recognition, which 
can perform well in the case where the training and test samples 
do not have the same distribution. Additionally, we provide 
discussions of the atom selection methods, which play an 
important role in the process of dictionary learning.     

The remainder of this paper is organized as follows. Section 
II introduces the shared dictionary learning algorithm. Section 
III presents the class-specific dictionary learning algorithm. 
Section IV gives an introduction to the commonality and 
particularity dictionary learning algorithm. The auxiliary 
dictionary learning algorithm is presented in Section V. The 
domain adaptive dictionary learning algorithm is presented in 
Section VI. The algorithm for selecting atoms is introduced in 
Section VII. The experimental results of seven dictionary 
learning and sparse coding algorithms are presented in Section 
VIII. Finally, the conclusions are presented in Section IX.  

II. SHARED DICTIONARY LEARNING ALGORITHM 
When the inter-class variation of the face images is small, a 

shared dictionary can adequately capture the main 
characteristics of the face images, such that the dictionary 
obtained using the training samples can represent a test sample. 
A shared dictionary learning algorithm only learns a dictionary 
by using training samples of all classes and expects the 
obtained dictionary to have discriminative ability for different 
classes. Then, a test sample can be represented by using the 
learned dictionary, and the representation coefficients are used 
for classification. The K-SVD algorithm is one of the most 
well-known shared dictionary learning algorithms [20]. Many 
variants of the original K-SVD algorithm have been proposed 
and applied in image de-noising and image reconstruction 
[21-23]. The K-SVD algorithm focuses on reconstruction. In 
general, it is used as a benchmark dictionary learning algorithm 
for face recognition.  

A typical and significant shared dictionary learning 
algorithm was proposed by Jiang [24], which first assigned a 
label to each atom by using the K-SVD algorithm and then 
constructed a discriminative sparse coding error term by 
exploiting the labels of the atoms (LC-KSVD). Thus, it can 
improve the discriminative ability of the shared dictionary. The 
objective function of the LC-KSVD algorithm is as follows. 

2 2 2

2 2 2

00

min   + +  

subject to i, 
i
x T

α β− − −

∀ ≤
D,X,W,A

Y DX H WX Q AX
(1) 

where 
1

[ , , ] n N
N

y y ×= ∈ ℜY are the training samples, and n  
and N are the dimension and number of them, respectively. 
The label matrix of training samples Y is defined as 

1
, , C N

N
h h ×⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦H ( 0, ,1, , 0

T C
i
h ⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦ ). Only the

j -th entry of 
i
h is non-zero if training sample 

i
y is in the j -th 

class, and C is the class number of the training samples.

1
[ , , ] n K

K
d d ×= ∈ ℜD is the learned dictionary, and K  is the 

number of atoms. 
1

[ , , ] K N
N

x x ×= ∈ ℜX is the coding 
coefficient matrix. W is the classifier parameter, and 

2

2
−H WX is the classification error term. Q is the 

discriminative sparse code of training sampleY , and it can be 
defined as 

1
, , K N

N
q q ×⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦Q . 

1, , 0, ,1,1, , 0
T TK K

i i i
q q q⎡ ⎤ ⎡ ⎤= = ∈ ℜ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ is the 

discriminative sparse code corresponding to training sample
i
y . 

The non-zero values of 
i
q  occur at those indices where training 

sample
i
y  and atom 

k
d share the same label. For example, for 

1 7
, ,d d⎡ ⎤= ⎢ ⎥⎣ ⎦D  and 

1 7
, ,y y⎡ ⎤= ⎢ ⎥⎣ ⎦Y , if 

1
y ,

2
y ,

1
d and 

2
d are 

from the first category, 
3
y ,

4
y ,

3
d and 

4
d are from the second 

category, and
5
y ,

6
y ,

7
y ,

5
d ,

6
d and 

7
d are from the third category, 

then Q  should be defined as 
1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q . Each column of Q corresponds 

to a discriminative sparse code for a training sample.A is the 

linear transformation matrix, and 
2

2
−Q AX is the 

discriminative sparse-code error term. α and β are the 
regularization parameters. 

0
T  is the sparsity constraint factor 

that limits the number of non-zero elements.  
The LC-KSVD algorithm classification method is as 

follows. 
(1) Test sample

t
y can be represented by shared dictionaryD  

as  

2

2

00

argmin

. .
tx
y x

s t x T

−

≤

D
                                    (2) 



2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2695239, IEEE
Access

 3

This problem can be solved by using the Orthogonal 
Matching Pursuit (OMP) algorithm [25]. We denote the 
obtained optimal representative coefficient byx ∗ .  
(2) The label of test sample

t
y can be obtained by using the 

following equation 

( )argmaxj x∗= W                                                      (3) 

Classification parameter W can be calculated by using 
coding coefficients matrixX and label matrixH of the training 
samples as follows: 

( ) 1
T T

−
= +W HX XX I                                                   (4)                                     

where I is an identity matrix. 
The shared dictionary learning algorithms can also use the 

SVM methods to classify the test samples. Regardless, the 
coding coefficient matrix plays an important role in improving 
the classification performance of the shared dictionary learning 
algorithm. To improve the discriminative ability of the shared 
dictionary, many constrained models are proposed. We divide 
these constrained models into two categories, the locality 
constrained model and the label constrained model. 

A. Locality Constrained Model 
The locality information of data plays an important role in 

sparse coding and dictionary learning. In fact, locality is more 
essential than sparsity since locality leads to sparsity but not 
necessary vice versa [26]. Therefore, an increasing number of 
researchers focus on the locality preservation strategy when 
designing dictionary learning algorithms for face recognition. 
Their main goal is to preserve the structure information of 
training samples and to expect similar training samples to have 
more similar coding coefficients than other training samples, 
which is helpful for improving the discriminative ability of the 
dictionary. A typical algorithm was proposed by Zheng [27], 
which used the training samples to construct a Laplacian matrix 
for preserving the locality characteristics. Additionally, Gao 
[28] constructed a hypergraph Laplacian matrix to preserve 
local information of the training samples for improving the 
discriminative ability of the learned dictionary. However, face 
images of the same person vary with facial poses and 
expressions as well as illumination, so it is difficult to obtain a 
robust Laplacian matrix to accurately reflect the locality 
information of the training samples. Thus, it may degrade the 
discriminative ability of the learned dictionary. Jiang [29] 
modelled the problem of discriminative dictionary learning as a 
graph topology selection problem, which was solved by 
maximizing a monotonically increasing and submodular 
objective function. Haghiri [30] presented a discriminative 
dictionary learning algorithm that preserved the local structure 
of the training samples. Because the face images usually 
contain noise, this algorithm might not be robust. Liu [31] 
constructed a locality constrained dictionary learning algorithm 
by using the training samples and atoms to preserve the locality 
information. This can reduce the influence of noise to some 
extent. Yang [32] proposed a visual feature coding method by 
using the dictionary structure. Recently, the locality 
information of atoms has also been used to improve the 
discriminative ability of the shared dictionary [33].  

B.  Label Constrained Model 
The label constrained model belongs to supervised learning. 

For face recognition, we usually encounter the problem of 
insufficiently available labelled samples. Therefore, the label 
information is very important for face recognition based on 
dictionary learning. Many dictionary learning algorithms based 
on the label constraint model have been proposed. For example, 
a typical algorithm was proposed by Zhang [34], which 
constructed a classification error term by using the labels of 
training samples with the goal of improving the discriminative 
ability of the dictionary. Shrivastava [35] proposed a 
discriminative dictionary learning algorithm by using partially 
labelled data. Pham [36] proposed a joint representation and 
classification framework that achieved the dual goals of finding 
the most discriminative sparse over-complete encoding and the 
optimal classifier parameters. Lin [37] proposed an incoherent 
dictionary learning algorithm by explicitly incorporating a 
correlation penalty into the dictionary learning model. Guo [38] 
used the labels of training samples to construct a pair-wise 
sparse code error term and then combined it with the 
classification error term to learn a discriminative dictionary for 
face verification and recognition problems. However, since 
face images usually contain noise, the coding coefficients 
would be contaminated and the discriminative ability of the 
learned dictionary may be degraded. In addition, using the label 
information of the original training samples to construct the 
discriminative term could not exploit the discriminative 
information hidden in the training samples. This also degrades 
the discriminative ability of the shared dictionary. Recently, the 
labels of atoms also have been used to improve the 
discriminative ability of the shared dictionary. Jiang [24] 
assigned a label to each atom by using the K-SVD algorithm 
and then constructed a discriminative sparse code error term by 
using the labels of atoms. Li [33] constructed a label that 
embedded within the atoms to improve the discriminative 
ability of the shared dictionary.     

Moreover, the kernel method [39-40], non-negative 
constrained method [41], and the Bayesian method [42] are also 
used to improve the discriminative ability of the shared 
dictionary. 

The shared dictionary learning algorithm can learn a 
dictionary for all classes, and the number of atoms is relatively 
small. However, the differences of the different classes may not 
be well conveyed in the shared dictionary. Moreover, the noise 
of face images can also reduce the robust representation ability 
of the shared dictionary.  

III. CLASS-SPECIFIC DICTIONARY LEARNING 
ALGORITHM 

Because face images of the same person vary with facial 
poses and expressions as well as illumination, the intra-class 
variation of face images is usually large and even greater than 
the inter-class variance of face images. Therefore, the 
class-specific dictionary learning algorithm is usually designed 
to capture the main characteristics of face images of each class. 
A class-specific dictionary learning algorithm first learns a 
dictionary for each class by using face images of the class, and 
then classifies the test face images by judging which class leads 
to the minimum reconstruction error. It exploits the 
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reconstruction term to improve the discriminative ability of the 
learned dictionary. A typical algorithm was proposed by Yang 
[43], which learned a dictionary based on the Fisher 
discrimination criterion (FDDL). Specifically, a structured 
dictionary, whose atoms correspond to the class labels, is 
proposed, with which not only the representation residual can 
be used to distinguish different classes, but additionally the 
representation coefficients have smaller within-class scatter 
and larger between-class scatter. The objective function of the 
FDDL algorithm is formulated as follows. 
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The classification method is as follows: 
First, test sample

t
y is sparsely represented by sub-dictionary 

i
D , as follows: 
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Then, test sample 
t
y  is classified using 
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2

identity min
t t i i
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where identity( )ty  is the obtained label for
t
y . 

Shrivastava [44] proposed a non-linear discriminative 
dictionary learning algorithm by using the kernel trick. Chen 
[45] proposed a dictionary learning algorithm for video face 
recognition. Ma [46] integrated rank minimization into sparse 
representation for dictionary learning. Cai [47] proposed a 
support vector guided dictionary learning (SVGDL) algorithm 
by formulating the discrimination term as the weighted 
summation of the squared distances between all pairs of coding 
vectors. Zheng [48] proposed a discriminative dictionary 
learning algorithm, the Fisher discrimination K-SVD algorithm. 
Wang [49] proposed a supervised class-specific dictionary 
learning algorithm by incorporating the similarity constraint 
and dictionary incoherence terms. It not only captured the 
correlations between similar samples by sharing dictionaries 
but also encouraged dictionaries associated with different 

classes to be independent by enforcing the dictionary 
incoherence term.  

The class-specific dictionary learning algorithm learns a 
sub-dictionary for face images of each class, and captures 
particular characteristic of face images of each class. A 
problem in this type of algorithm is that a class in the face 
recognition task may have only a few training samples so the 
information used to obtain a sub-dictionary is limited and the 
uncertainty of the atoms may increase.  

IV. COMMONALITY AND PARTICULARITY DICTIONARY 
LEARNING ALGORITHM 

For complex face recognition tasks, the intra-class variation 
of face images is usually large and even greater than the 
inter-class variation of face images. Therefore, the 
commonality and particularity dictionary learning algorithm is 
proposed to cope with the inter-class variance by using the 
commonality dictionary to address the intra-class variance by 
using the particularity dictionary. A commonality and 
particularity dictionary learning algorithm learns a particularity 
dictionary for each category that captures the most 
discriminative features of this category, and simultaneously 
learns a commonality dictionary whose atoms are shared by all 
the categories and only contribute to the representation of the 
data rather than discrimination. A typical algorithm is proposed 
by Wang [50], which designed a class-specific dictionary 
(called particularity) for each category to capture the most 
discriminative features of the category, and simultaneously 
learned a shared pattern pool (called commonality), whose 
atoms were shared by all the categories and only contributed to 
representation of the data rather than discrimination (DLSPC). 
The objective function of the DLSPC algorithm is 

( )

( )

22

2

1

1

1 1

min   

+   

T
C i i i i i iF F

T
i

i i i
F

C

i j
i j

j i

λφ

η

=

+

= =
≠

⎧ ⎫⎪ ⎪⎪ ⎪− + −⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪+ +⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

Ω

∑

∑∑

D,X

Y DX Y DQQ X

Q X X

D ,D

(8) 

where
i
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( )
2

, T
i j i j F

Ω =D D D D . For the DLSPC algorithm, there are 

two types of classification methods. λ and η are the parameters. 
The first type uses the global coding classifier as follows. 

(1) Test sample
t
y is represented by using the commonality 

and particularity dictionaries and the formula is 
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(2) Test sample
t
y is assigned to the class with the minimum 

reconstruction error by using 
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The second type is the local coding classifier, which is 
implemented below. 

(1) Test sample
t
y is represented by using the particularity 

dictionary and the formula is 
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X
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(2) Test sample
t
y is assigned to the class with the minimum 

reconstruction error by using 
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2
identity min
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Sun [51] presented a dictionary learning model to improve 
sparse representation for image classification, with the goal of 
learning a class-specific dictionary for each class and a 
common dictionary shared by all classes. The model is 
composed of discriminative fidelity, a weighted group sparse 
constraint, and a class-specific dictionary incoherence term. 
Because every class must have sufficient representative 
training samples and the training data must be uncorrupted, 
Yang [52] proposed an analysis-synthesis commonality and 
particularity dictionary learning algorithm for face recognition.  

The commonality and particularity dictionary learning 
algorithm not only preserves common characteristics of all face 
images but also preserves specific characteristics of face 
images of each class. Therefore, the commonality and 
particularity dictionary learning algorithm is very suitable for 
face recognition. However, to design a commonality dictionary 
and a particularity dictionary with the proper number of atoms 
is very important and has a severe effect on the performance of 
face recognition.  

V. THE AUXILIARY DICTIONARY LEARNING ALGORITHM 
Face recognition is a typical small sample size problem and 

insufficiently available samples have severe negative effects on 
dictionary learning algorithms for face recognition. To address 
this problem, the auxiliary dictionary learning algorithm has 
been proposed to improve the classification performance of the 
case where each class has only one training sample. A typical 
auxiliary dictionary learning algorithm for face recognition is 
proposed by Wei [53], which learns a robust auxiliary 
dictionary from a generic training set. The objective function of 
the algorithm is 
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e
D

is the auxiliary dictionary. ;i i i
g d

x x x⎡ ⎤= ⎢ ⎥⎣ ⎦ is the sparse 

coefficient of i
e
y  and 1, , Nx x⎡ ⎤= ⎢ ⎥⎣ ⎦X is the sparse coefficient 

matrix for 
e
Y . i

g
x  and i

d
x indicate the coefficients associated 

with gallery
e
G and auxiliary dictionary

e
D , respectively. 

Function ( )iit d
xδ outputs a vector whose only nonzero entries 

are the entries in i
g
x that are associated with the it -th class ( it

denotes the label of i
e
y in the auxiliary training samples). 

Function ( ).f is defined as 

( ) ( )( )
( )

( ) ( )

2

1

ln 1 exp1

2 ln 1 exp
i

i

d

i
i

e
f e

f e f e

μ μδ

μ μδ

=

⎛ ⎞⎟+ − +⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜− + ⎟⎜⎝ ⎠

= ∑
       (14) 

where
i
e is the i -th entry of ,

e
e y x⎡ ⎤= − ⎢ ⎥⎣ ⎦Y D .  

The classification method is as follows. 
(1) Normalize test sample

t
y  and the columns of Y to have 

unit 
2
l -norm. 

(2)Initialize the weight matrix by setting =W I .  
(3)Calculate the optimal solution of representation 

coefficient x  and weight matrix W by using 
2

1

2

min ,  +     y
ex

d

x
x y x

x
λ

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟⎡ ⎤⎜← − ⎟⎜ ⎢ ⎥ ⎢ ⎥⎟⎣ ⎦⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
W Y D (15) 

,   
e

e y x⎡ ⎤← − ⎢ ⎥⎣ ⎦Y D (16) 

( ) ( )( )
1
2

1
, ,   

d
diag w e w e←W (17) 

( )
( )
( )

2

2

exp

1 exp

k

k

k

e
w e

e

μ μδ

μ μδ

− +
=

+ − +
(18) 

(4)Classify test sample
t
y via the weighted reconstruction 

errors as follows in equation (19). 

( )
{ }

( )
1,2, ,

identity min , y
t t el L

d

x
y y

x

δ ∗
∗

∗∈

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟⎜ ⎡ ⎤ ⎟= −⎜ ⎢ ⎥⎟⎢ ⎥⎜ ⎣ ⎦ ⎟⎜ ⎢ ⎥⎟⎜⎝ ⎠⎣ ⎦
W Y D (19) 

Supposing that the intra-class variations of one subject can 
be approximated by a sparse linear combination of other 
subjects, the extended SRC algorithm [54] applied to an 
auxiliary intra-class variant dictionary to model the possible 
variation between the training and testing images. The auxiliary 
intra-class variant dictionary is constructed by using either the 
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gallery faces themselves or generic faces that are outside the 
gallery. To compensate for the missing illumination 
information provided by multiple training images, Zhuang [55] 
used additional illumination examples of face images from one 
or more additional classes to construct an illumination 
dictionary. Then, they used the sparse illumination transfer 
(SIT) technique to transfer the pose and illumination 
information from the alignment stage to the recognition stage. 
Moreover, Deng [56] proposed a superposed SRC (SSRC) 
algorithm, in which the dictionary was assembled by the class 
centroids and sample-to-centroid differences, which led to a 
substantial improvement in the SRC algorithm. Gao [57] 
proposed an intra-class variance dictionary by using the gallery 
set.  

When a suitable dictionary is learned by using the auxiliary 
dictionary learning algorithm, the classification performance 
will be improved. However, the method for selecting suitable 
auxiliary training samples for learning a dictionary is a key 
point of this algorithm.  

VI. DOMAIN ADAPTIVE DICTIONARY LEARNING ALGORITHM 
For face images, training samples and testing samples may 

come from different domains. In this case, if we still use 
conventional dictionary learning algorithms to learn 
dictionaries from the training samples, the performance of face 
recognition will degrade. A domain adaptive dictionary 
learning algorithm can adequately resolve this problem. It first 
learns a dictionary that can transfer the features of the source 
domain to the target domain. It then utilizes a source domain 
with sufficient labelled data to learn a classifier for a target 
domain which is usually collected from a different distribution. 
A typical domain adaptive dictionary learning algorithm is 
proposed by Zhu [58], which expanded the intra-class diversity 
of original training samples by virtue of collaboration with the 
source data. The objective function is defined as  

( )

22

2 2, , , ,
2 2

2 2

00

min   +

+   

   subject to i, 

t s t

T
t t t s s t

t t

t i
x T

α β

− −

− + −

∀ ≤

D D X A W
Y D X YA D X

Q BX H WX    (20)              

where 1, , L n L
t t t
y y ×⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦Y  is the training sample of the 

target domain, and L and n are the number of training samples 
and dimensions, respectively. 1, , M

s s s
y y⎡ ⎤= ⎢ ⎥⎣ ⎦Y is the training 

sample of the source domain, and M is the number of training 
samples.

t
D is the learned target domain dictionary and 

s
D is 

the learned source domain dictionary. 
t
X is the coefficient 

matrix of the target domain and ( )t ix is the i -th column of 

coefficient matrix 
t
X . A is a transformation matrix, and it can 

transform the source domain data to match the target domain 
data. Thus, Acan be defined as 

1

2

C

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

A
A

A

A
,

 

( ) ( ) ( )( )1  if , :,
,

0  otherwise
C C

C

i j Max j
A i j

⎧⎪ Λ = Λ⎪⎪= ⎨⎪⎪⎪⎩
              (21) 

It is assumed that c
t
Y and c

s
Y are samples of the C -th 

category from the target and source domains, respectively. 
C

Λ

is the Gaussian distance between each pair of samples c
t
Y  and 

c
s
Y . Q is the input signal of 

t
Y , and it can be defined as

1 2
, , , L L

L
q q q ×⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦Q , 10, ,1,1, 0

T L
i
q ×⎡ ⎤= ∈ ℜ⎢ ⎥⎣ ⎦ , and 

non-zero entries of 
i
q  appear at those indices where i

t
y  and k

t
x

share the same class label. H is the label matrix of 
t
Y .W is 

the coefficient of the linear classifier. B is the linear 
transformation matrix that maps the original sparse codes to the 
target discriminative sparse codes. The classification method is 
the same as the LC-KSVD algorithm. 

Qiu [59] presented a function learning framework for the 
task of transforming a dictionary learned from a visual domain 
to another domain and maintaining a domain-invariant sparse 
representation of a signal. Huang [60] proposed a coupled 
dictionary and feature space learning algorithm for 
cross-domain image synthesis and recognition, which not only 
obtained a shared feature space for associating cross-domain 
image data for recognition purposes but also jointly updated the 
dictionaries in each image domain for improving the 
representation ability. Shekhar [61] proposed a generalized 
domain-adaptive dictionary learning algorithm by optimally 
representing both source and target domains with a shared 
dictionary. They jointly learned projections of data in the two 
domains, and the latent dictionary can succinctly represent both 
domains in the projected low-dimensional space. Ni [62] 
proposed interpolating subspaces via dictionary learning to link 
the source and target domains. These subspaces were able to 
capture the intrinsic domain shift and formed a shared feature 
representation for cross domain recognition. To compensate for 
the transformation of faces due to changes in viewpoint, 
illumination, and resolution, Qiu [63] proposed compositional 
dictionaries for domain adaptive face recognition.  

When a suitable dictionary is learned by using a domain 
adaptive dictionary algorithm, the classification performance of 
face recognition will be improved. However, adequately 
transferring the characteristics of the source domain to the 
target domain is very important for this type of algorithm.  

VII. NUMBERS OF THE ATOMS 
To better represent face images, it seems that a learned 

dictionary should contain as many atoms as possible to cover 
all the variations of face images for each subject. In general, a 
larger dictionary may provide a greater variety of illuminations, 
poses and occlusion of face images. However, a larger 
dictionary is not always better, as the dictionary might contain 
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some similar elements or some elements that are seldom used 
for representation. To achieve excellent face recognition 
performance, a learned dictionary should have low 
reconstructive error, as well as compact representation and 
satisfactory discriminative ability. Specifically, the compact 
representation expects that the learned dictionary consists of 
incoherent atoms, and encourages similar signals, which are 
more likely from the same class, to be consistently described by 
a similar set of atoms with similar coefficients [65]. Therefore, 
many methods have been proposed for selecting a suitable 
number of atoms for different applications.  

Mazhar [64] proposed an Enhanced K-SVD algorithm 
(EK-SVD), which combined the competitive agglomeration 
algorithm and the matching pursuit algorithm to develop a 
dictionary with an optimal size for a given dataset, without 
compromising its approximation accuracy. Qiu [65] used 
information theory to select atoms from an initial dictionary for 
image classification. Winn [66] used the pair-wise merging of 
visual words from an initially large dictionary to obtain an 
optimally compact visual dictionary. Krause [67] developed an 
efficient learning framework to construct signal dictionaries for 
sparse representation by selecting the dictionary columns from 
multiple candidate bases. Yaghoobi [68] presented an 
exemplar-based approach for the linear model (called the 
dictionary). Wang [69] proposed a semi-supervised robust 
dictionary learning algorithm, which designed a data adaptive 
dictionary by imposing structured sparsity on the data 
representation coefficients to automatically select prominent 
dictionary basis vectors, such that the optimal dictionary size 
was learned from input data in a principled way and no heuristic 
pre-specification was required. Lu [70] proposed a scale 
adaptive dictionary learning framework, which jointly 
estimated suitable scales and corresponding atoms in an 
adaptive way, without the need for prior information. They 
designed an atom counting function and developed a reliable 
numerical scheme to solve the challenging optimization 
problem.  

Since the number of atoms varies widely, ranging from 
hundreds to hundreds of thousands, the comprehensive 
classification performance with different numbers of atoms has 
not been presented in previous literature. Therefore, in the next 
section we provide the experimental results of six dictionary 
learning algorithms with different numbers of atoms on five 
face databases. The experimental results can provide some 
in-depth insights to the performance of dictionary learning 
algorithms for face recognition and are helpful for researchers 
to use and design dictionary learning algorithms.  

VIII. EXPERIMENTAL RESULTS 
In this section, we provide the experimental results of the 

K-SVD [20], D-KSVD [34], LC-KSVD [24], FDDL [43], 
SVGDL [47] and DLSPC [50] algorithms with different 
numbers of atoms on the Labeled Faces in the Wild (LFW) [71], 
the Georgia Tech (GT) [72], the Extended Yale B [73], the AR 
[74] and the CMU PIE [75] face databases. Moreover, to better 
show the representation ability of the learned dictionary, we 
also compare these dictionary learning algorithms with the 
SRC [1] algorithm. 

A. Experiment Setting 
In this subsection, we provide the implementation details of 

seven comparison algorithms. For the SRC algorithm, the 
implementation procedure is presented in [8] and the 
representation coefficients of test samples are obtained by 
using the DALM-fast method. For the D-KSVD, LC-KSVD, 
FDDL, SVGDL and DLSPC algorithms, we use the source 
codes provided by the authors. For the K-SVD algorithm, the 
K-SVD box is used to learn a dictionary, and it uses the same 
classification method as the D-KSVD and LC-KSVD 
algorithms. The codes used for the SRC and K-SVD algorithms 
can be downloaded at:http://www.yongxu.org/default.html. 
Since the LC-KSVD2 algorithm always achieves higher 
average recognition rates than the LC-KSVD1 algorithm, we 
use the LC-KSVD2 algorithm as the LC-KSVD algorithm in 
this paper. For the DLSPC algorithm, when the global coding 
classifier is used, we denote it as the DLSPC-G algorithm. 
When the local coding classifier is used, we denote it as the 
DLSPC-L algorithm.  

B. Experimental Results on the LFW Database 
The LFW database contains more than 13,000 images of 

faces collected from the web, and all of them are labelled with 
the name of the person pictured. The main goal is to study the 
problem of unconstrained face recognition. In the database, 
1,680 of the people have two or more distinct photos. 
Following [76], we use a cropped version (LFW crop) of the 
LFW dataset, which retains only the centre portion of each 
image (i.e., the face) and almost all of the background is 
omitted. The LFW crop database was created due to concern 
about the misuse of the original LFW dataset, where the face 
matching accuracy can be unrealistically boosted through the 
use of the background portions of the images (i.e., exploitation 
of possible correlations between faces and backgrounds). For 
each LFW image, the area inside a fixed bounding box was 
extracted. The bounding box was at the same location for all 
images, with the upper-left and lower-right corners being (83, 
92) and (166, 175), respectively. The extracted area was then 
scaled to a size of 64×64 pixels. The selection of the bounding 
box location was based on the positions of 40 randomly 
selected LFW faces. As the location and size of faces in the 
LFW database were determined through the use of an automatic 
face locator (detector), the cropped faces in the LFW crop 
database exhibit real-life conditions, including misalignment, 
scale variations, and in-plane as well as out-of-plane rotations.  

 
 
 
 

 
 
 
 
 
 

In this experiment, we select and use a subset of the LFW 
crop database consisting of 1,215 images of 86 people. In this 
subset each person has approximately 11 to 20 images. Each 
image is resized to a 32×32 pixel image. Sample images from 
the LFW crop database are shown in Fig.1. 

Fig.1. Example images from the LFW crop database 
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We randomly select ten images of each person as the training 
samples and reserve the remaining images as the test samples. 
For the SRC algorithm, the number of training samples of each 
class is varied from 2 to 10. For the K-SVD, D-KSVD and 
LC-KSVD algorithms, the number of atoms is varied from 172 
to 860 with a step of 86. For the FDDL and SVGDL algorithms, 
the number of atoms of each class sub-dictionary is varied from 
2 to 10. For the DLSPC algorithm, the learned dictionary 
contains two parts, one is the shared atoms and the other is the 
specific class atoms. The number of atoms of the shared 
dictionary is 86, and the number of atoms of each class is varied 
from 1 to 9. The seven comparison algorithms are each 
executed ten times and the average recognition rates are 
reported in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C.  Experimental Results on the GT Face Database 
The Georgia Tech (GT) face database was built at Georgia 

Institute of Technology, and contained images of 50 people 
taken in two or three sessions. The pictures show frontal and/or 
tilted faces with different facial expressions, lighting conditions 
and scales. Everyone in the database is represented by 15 colour 
JPEG images with a cluttered background and a resolution of 
640×480 pixels. The average size of the faces in these images is 
150×150 pixels. Each image was manually labelled to 
determine the position of the face in the image. We use the face 
image with the background removed. Each image is 30 by 40 
pixels. Sample images from the GT face database are shown in 
Fig.3.  

 
 
 
 
 
 
 
 
 
 
 

 
We randomly select ten images of each person as training 

samples and reserve the remaining images as test samples. For 

the SRC algorithm, the number of training samples of each 
class is varied from 2 to 10. For the K-SVD, D-KSVD and 
LC-KSVD algorithms, the number of atoms is varied from 100 
to 500 with a step of 50. For the FDDL and SVGDL algorithms, 
the number of atoms of each class sub-dictionary is varied from 
2 to 10. For the DLSPC algorithm, the learned dictionary 
contains two parts, one is the shared atoms and the other is the 
specific class atoms. The number of atoms in the shared 
dictionary is 50, and the number of atoms in each class is varied 
from 1 to 9. The seven comparison algorithms are each 
executed ten times and the average recognition rates are 
reported in Fig.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D.  Experimental Results on the Extended Yale B Face 
Database 

The Extended Yale B face database consists of 2,414 
front-face images of 38 people which were taken under various 
illumination conditions and expressions. There are 
approximately 59 to 64 images for each person and each image 
was normalized to the size of 32×32 pixels. Examples of 
images from the Extended Yale B face database are shown in 
Fig.5. 

 
 
 
 
 
 
 
 
 
 
 

 
We randomly select 32 images of each person as training 

samples and reserve the remaining images for testing. For the 
SRC algorithm, the number of training samples of each class is 
varied from 2 to 32. For the K-SVD, D-KSVD and LC-KSVD 
algorithms, the number of atoms is varied from 76 to 1216 with 
a step of 38. For the FDDL and SVGDL algorithms, the number 
of atoms is varied from to 2 to 32 in each class sub-dictionary. 
For the DLSPC algorithm, the learned dictionary contains two 

Fig.2. The average recognition rates of seven algorithms with 
different numbers of atoms 

Fig.4. The average recognition rates of seven algorithms with 
different numbers of atoms 

Fig.5. Example images from the Extended Yale B face database 

Fig.3.Example images from the GT face database 
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parts, one is the shared atoms, and the other is the specific class 
atoms. The number of atoms in the shared dictionary is 38, and 
the number of atoms of each class is varied from 1 to 31. The 
seven comparison algorithms are each executed ten times and 
the average recognition rates are reported in Fig.6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

E. Experimental Results on the AR Face Database 
The AR face database contains over 4,000 images of 126 

people. There are 26 face images of each person taken during 
two sessions, and each image is taken under various lighting 
conditions. For each person, there are 12 images including 
those with the sunglasses and scarves. Following [77], a subset 
of the AR face database consisting of 3,120 images from 120 
people is used in this experiment. The resolution of the AR 
images was 40×50 pixels. Images of one person from the AR 
face database are shown in Fig.7.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We randomly select ten images of each class as training 
samples and reserve the remaining images for testing. For the 
SRC algorithm, the number of training samples of each class is 
varied from 2 to 10. For the K-SVD, D-KSVD and LC-KSVD 
algorithms, the number of atomsis varied from 240 to 1200 with 
a step of 120. For the DLSPC algorithm, the learned dictionary 
contains two parts, one is the shared atoms and the other is the 
specific class atoms. The number of atoms in the shared 

dictionary is 120, and the number of atoms of each class is 
varied from 1 to 9. The seven comparison algorithms are each 
executed ten times and the average recognition rates are 
reported in Fig.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. Experimental Results on the PIE Face Database 
The PIE face database consists of 41,368 front-face images 

of 68 people, and the face images of each person are captured 
under 13 different poses, 43 different illumination conditions, 
and with 4 different facial expressions. Some sample images 
from the PIE face database are shown in Fig.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following [78], we choose the five near frontal poses (C05, 
C07, C09, C27, and C29) of each subject and use all images 
under different illuminations and expressions. Thus, we obtain 

Fig.9. Example images from the PIE face database 

Fig.6. The average recognition rates of seven algorithms with
different numbers of atoms 

Fig.7. Example images from the AR face database 

Fig.8. The average recognition rates of seven algorithms with 
different numbers of atoms 

Fig.10. The average recognition rates of seven algorithms with 
different numbers of atoms 
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170 images for each individual. Every image is normalized to 
the size of 32×32 pixels. We randomly select twenty images of 
each person as training samples and reserve the remaining 
images as test samples. For the SRC algorithm, the number of 
training samples of each class is varied from 2 to 20. For the 
K-SVD, D-KSVD and LC-KSVD algorithms, the number of 
atoms is varied from 136 to 1360 with a step of 68. For the 
DLSPC algorithm, the learned dictionary contains two parts, 
one is the shared atoms and the other is the specific class atoms. 
The number of atoms in the shared dictionary is 68, and the 
number of atoms of each class is varied from 1 to 19. The seven 
comparison algorithms are each executed ten times and the 
average recognition rates are reported in Fig.10. 

G.  Analysis of Experimental Results 
In the above sections, the experimental results on the five 

face databases were elaborated. We summarize the 
experimental results as follows.  
1) Fig.2, Fig.4, Fig.6, Fig.8 and Fig.10 show that the average 

recognition rates of the FDDL and SVGDL algorithms are 
insensitive to the number of atoms. For the Extended Yale 
B, AR and PIE face databases, the average recognition 
rates of the DLSPC-G and DLSPC-L algorithms increase 
with the number of atoms. However, the average 
recognition rates of the DLSPC-G and DLSPC-L 
algorithms do not always increase with the number of 
atoms on the LFW and GT face databases. The average 
recognition rates of the K-SVD, D-KSVD and LC-KSVD 
algorithms on the five face databases do not always 
increase with the number of atoms. Since the K-SVD, 
D-KSVD and LC-KSVD algorithms are all shared 
dictionary learning algorithms, the FDDL and SVGDL 
algorithms are both specific class dictionary learning 
algorithms, and the DLSPC algorithm is the commonality 
and particularity dictionary learning algorithm, the 
experimental results demonstrate that the specific class 
dictionary learning algorithm is less sensitive to the 
variation in the number of atoms than the shared dictionary 
learning algorithm and the commonality and particularity 
dictionary learning algorithm.  

2) When the number of atoms is equal to the number of 
training samples, the average recognition rates of the 
D-KSVD, LC-KSVD, FDDL, SVGDL, DLSPC-G and 
DLSPC-L algorithms on the five face databases are higher 
than the average recognition of the SRC algorithm in most 
cases. This is mainly because the pose, illumination and 
expression information in face images can be implicitly 
encoded into the learned dictionaries, such that the learned 
dictionaries can have more powerful representation ability 
than the original training samples.    

3) When the number of training samples increases, the FDDL 
and SVGDL algorithms achieve higher average 
recognition rates than the D-KSVD, LC-KSVD, DLSPC-G 
and DLSPC-L algorithms in most cases. This demonstrates 
that the specific class dictionary learning algorithm can 
preserve main characteristics of face images better than the 
shared dictionary learning algorithm and the commonality 
and particularity dictionary learning algorithm.  

4) For the SRC algorithm, when the number of the training 
samples increases, the average recognition rate also 

increases in most cases. This demonstrates that the number 
of training samples plays an important role in face 
recognition.  

IX. CONCLUSION 
In this survey, we provide a current review of the existing 

dictionary learning algorithms for face recognition, which 
covers five types of major and very different algorithms, i.e., 
the shared dictionary learning algorithm, the class-specific 
dictionary learning algorithm, the commonality and 
particularity dictionary learning algorithm, the auxiliary 
dictionary learning algorithm and the domain adaptive 
dictionary learning algorithm. Additionally, we offer 
experimental results of different dictionary learning and sparse 
coding algorithms with different numbers of atoms in face 
databases. Experimental results show that the specific class 
dictionary learning algorithms are less sensitive to the variety 
of the number of atoms than the shared dictionary learning 
algorithms and the commonality and particularity dictionary 
learning algorithms. This review offers important ideas and 
cues for designing dictionary learning algorithms for face 
recognition.   
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